负载均衡算法实现
在这篇文章中,我将实现最常见的四种负载均衡算法,即随机负载、轮询负载、加权负载和一致性hash负载
随机负载
随机挑选目标服务器ip
type RandomBalance struct {
curIndex int
rss []string
}
// 添加新的服务ip
func (r *RandomBalance) Add(params ...string) error {
if len(params) == 0 {
return errors.New("param len 1 at least")
}
addr := params[0]
r.rss = append(r.rss, addr)
return nil
}
// 采用rand.Intn随机取一个服务ip
func (r *RandomBalance) Next() string {
if len(r.rss) == 0 {
return ""
}
r.curIndex = rand.Intn(len(r.rss))
return r.rss[r.curIndex]
}
func (r *RandomBalance) Get(key string) (string, error) {
return r.Next(), nil
}
轮询负载
ABC三台服务器,A B C A B C依次轮询
type RoundRobinBalance struct {
curIndex int
rss []string
}
func (r *RoundRobinBalance) Add(params ...string) error {
if len(params) == 0 {
return errors.New("param len 1 at least")
}
addr := params[0]
r.rss = append(r.rss, addr)
return nil
}
func (r *RoundRobinBalance) Next() string {
if len(r.rss) == 0 {
return ""
}
lens := len(r.rss)
if r.curIndex >= lens {
r.curIndex = 0
}
// 保存一个服务ip的游标
curAddr := r.rss[r.curIndex]
r.curIndex = (r.curIndex + 1) % lens
return curAddr
}
func (r *RoundRobinBalance) Get(key string) (string, error) {
return r.Next(), nil
}
加权负载
给目标设置访问权重,按照权重轮询
nginx的加权负载均衡策略
计算策略:
- currentWeight += effectiveWeight
- 选出最大的currentWeight节点作为选中节点
- currentWeight -= totalWeight
- 其中effectiveWeight的值不变,只有当服务异常的时候减少
type WeightRoundRobinBalance struct {
curIndex int
rss []*WeightNode
rsw []int
}
type WeightNode struct {
addr string
weight int //权重值
currentWeight int //节点当前权重
effectiveWeight int //有效权重
}
func (r *WeightRoundRobinBalance) Add(params ...string) error {
if len(params) != 2 {
return errors.New("param len need 2")
}
parInt, err := strconv.ParseInt(params[1], 10, 64)
if err != nil {
return err
}
node := &WeightNode{addr: params[0], weight: int(parInt)}
node.effectiveWeight = node.weight
r.rss = append(r.rss, node)
return nil
}
// Next 参考了 nginx 的加权负载均衡的策略
func (r *WeightRoundRobinBalance) Next() string {
total := 0
var best *WeightNode
for i := 0; i < len(r.rss); i++ {
w := r.rss[i]
//step 1 统计所有有效权重之和
total += w.effectiveWeight
//step 2 变更节点临时权重为的节点临时权重+节点有效权重
w.currentWeight += w.effectiveWeight
//step 3 有效权重默认与权重相同,通讯异常时-1, 通讯成功+1,直到恢复到weight大小
if w.effectiveWeight < w.weight {
w.effectiveWeight++
}
//step 4 选择最大临时权重点节点
if best == nil || w.currentWeight > best.currentWeight {
best = w
}
}
if best == nil {
return ""
}
//step 5 变更临时权重为 临时权重-有效权重之和
best.currentWeight -= total
return best.addr
}
func (r *WeightRoundRobinBalance) Get(key string) (string, error) {
return r.Next(), nil
}
一致性hash负载
请求固定URL访问指定IP
type Hash func(data []byte) uint32
type UInt32Slice []uint32
func (s UInt32Slice) Len() int {
return len(s)
}
func (s UInt32Slice) Less(i, j int) bool {
return s[i] < s[j]
}
func (s UInt32Slice) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
type ConsistentHashBanlance struct {
mux sync.RWMutex
hash Hash
replicas int // 复制因子
keys UInt32Slice // 已排序的节点hash切片
hashMap map[uint32]string // 节点哈希和Key的map,键是hash值,值是节点key
}
func NewConsistentHashBanlance(replicas int, fn Hash) *ConsistentHashBanlance {
m := &ConsistentHashBanlance{
replicas: replicas,
hash: fn,
hashMap: make(map[uint32]string),
}
if m.hash == nil {
//最多32位,保证是一个2^32-1环
m.hash = crc32.ChecksumIEEE
}
return m
}
// 验证是否为空
func (c *ConsistentHashBanlance) IsEmpty() bool {
return len(c.keys) == 0
}
// Add 方法用来添加缓存节点,参数为节点key,比如使用IP
func (c *ConsistentHashBanlance) Add(params ...string) error {
if len(params) == 0 {
return errors.New("param len 1 at least")
}
addr := params[0]
c.mux.Lock()
defer c.mux.Unlock()
// 结合复制因子计算所有虚拟节点的hash值,并存入m.keys中,同时在m.hashMap中保存哈希值和key的映射
for i := 0; i < c.replicas; i++ {
hash := c.hash([]byte(strconv.Itoa(i) + addr))
c.keys = append(c.keys, hash)
c.hashMap[hash] = addr
}
// 对所有虚拟节点的哈希值进行排序,方便之后进行二分查找
sort.Sort(c.keys)
return nil
}
// Get 方法根据给定的对象获取最靠近它的那个节点
func (c *ConsistentHashBanlance) Get(key string) (string, error) {
if c.IsEmpty() {
return "", errors.New("node is empty")
}
hash := c.hash([]byte(key))
// 通过二分查找获取最优节点,第一个"服务器hash"值大于"数据hash"值的就是最优"服务器节点"
idx := sort.Search(len(c.keys), func(i int) bool { return c.keys[i] >= hash })
// 如果查找结果 大于 服务器节点哈希数组的最大索引,表示此时该对象哈希值位于最后一个节点之后,那么放入第一个节点中
if idx == len(c.keys) {
idx = 0
}
c.mux.RLock()
defer c.mux.RUnlock()
return c.hashMap[c.keys[idx]], nil
}
func (c *ConsistentHashBanlance) SetConf(conf LoadBalanceConf) {
c.conf = conf
}